# Load the iris datasetdata(iris)# Perform Fisher's discriminant analysislibrary(MASS)lda_model <-lda(Species ~ ., data = iris)# Print the summary of the analysisprint(lda_model)
# Predict the species using the modelpredicted_species <-predict(lda_model, iris)$class# Compare the predicted species with the actual speciesaccuracy <-mean(predicted_species == iris$Species)cat("Accuracy:", accuracy *100, "%\n")
Accuracy: 98 %
show performance
Show the code
# Load the iris datasetdata(iris)# Perform Fisher's discriminant analysislibrary(MASS)lda_model <-lda(Species ~ ., data = iris)# Predict the species using the modelpredicted_species <-predict(lda_model, iris)$class# Create a confusion matrixlibrary(caret)
---title: iris dataset analysisdate: 1999-01-01author: Haky Imeditor_options: chunk_output_type: console---## clasify iris data```{r}# Load the iris datasetdata(iris)# Perform Fisher's discriminant analysislibrary(MASS)lda_model <-lda(Species ~ ., data = iris)# Print the summary of the analysisprint(lda_model)# Predict the species using the modelpredicted_species <-predict(lda_model, iris)$class# Compare the predicted species with the actual speciesaccuracy <-mean(predicted_species == iris$Species)cat("Accuracy:", accuracy *100, "%\n")```## show performance```{r}# Load the iris datasetdata(iris)# Perform Fisher's discriminant analysislibrary(MASS)lda_model <-lda(Species ~ ., data = iris)# Predict the species using the modelpredicted_species <-predict(lda_model, iris)$class# Create a confusion matrixlibrary(caret)confusion <-confusionMatrix(predicted_species, iris$Species)print(confusion)# Create a classification plotlibrary(ggplot2)iris_predicted <-data.frame(iris, Predicted_Species = predicted_species)ggplot(iris_predicted, aes(x = Species, fill = Predicted_Species)) +geom_bar(position ="fill") +labs(title ="LDA Classification Plot") +scale_fill_manual(values =c("#E41A1C", "#377EB8", "#4DAF4A")) +theme_minimal()```