analysis
how_to
Author

Haky Im

Published

March 28, 2023

Code
suppressMessages(library(tidyverse))
suppressMessages(library(glue))
PRE = "/Users/haekyungim/Library/CloudStorage/Box-Box/LargeFiles/imlab-data/data-Github/web-data"
##PRE="/Users/margaretperry/Library/CloudStorage/Box-Box/imlab-data/data-Github/web-data "
##PRE="/Users/temi/Library/CloudStorage/Box-Box/imlab-data/data-Github/web-data"
## COPY THE DATE AND SLUG fields FROM THE HEADER
SLUG="erap2-fine-mapping" ## copy the slug from the header
bDATE='2023-03-28' ## copy the date from the blog's header here
DATA = glue("{PRE}/{bDATE}-{SLUG}")
if(!file.exists(DATA)) system(glue::glue("mkdir {DATA}"))
WORK=DATA

## move data to DATA
#tempodata=("~/Downloads/tempo/gwas_catalog_v1.0.2-associations_e105_r2022-04-07.tsv")
#system(glue::glue("cp {tempodata} {DATA}/"))

## system(glue("open {DATA}")) ## this will open the folder 

ERAP2 fine-mapping results DAPG

Code
## query
## SELECT * FROM `gtex-awg-im.GTEx_V8_DAPG.variants_pip_eqtl` where gene like "ENSG00000164308%"
erap2 = read_csv(glue("{DATA}/bquxjob_41de6a2f_18728cf1999.csv"))
Rows: 2260 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): tissue, gene, variant_id
dbl (4): rank, pip, log10_abvf, cluster_id

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Code
## SELECT * FROM `gtex-awg-im.GTEx_V8_DAPG.variants_pip_sqtl` where variant_id like "chr5_96900192%" order by pip desc
tauras_snp = read_csv(glue("{DATA}/bquxjob_719c0131_18728db8878.csv"))
Rows: 113 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): tissue, gene_id, variant_id
dbl (4): rank, pip, log10_abvf, cluster_id

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Code
## finemapping for the intron affected by chr5_96900192
## SELECT * FROM `gtex-awg-im.GTEx_V8_DAPG.variants_pip_sqtl` where gene_id like "intron_5_96900189_96901506" order by pip desc

intron = read_csv(glue("{DATA}/bquxjob_41bc6351_18728e4ee94.csv"))
Rows: 2439 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): tissue, gene_id, variant_id
dbl (4): rank, pip, log10_abvf, cluster_id

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Code
##
intron %>% filter(tissue=="Cells_EBV-transformed_lymphocytes") %>% arrange(desc(pip))
# A tibble: 122 × 7
   tissue                  gene_id  rank variant_id    pip log10_abvf cluster_id
   <chr>                   <chr>   <dbl> <chr>       <dbl>      <dbl>      <dbl>
 1 Cells_EBV-transformed_… intron…     2 chr5_9690… 0.250        25.8          2
 2 Cells_EBV-transformed_… intron…     1 chr5_9690… 0.250        25.8          2
 3 Cells_EBV-transformed_… intron…     3 chr5_9690… 0.218        27.7          1
 4 Cells_EBV-transformed_… intron…     4 chr5_9690… 0.218        27.7          1
 5 Cells_EBV-transformed_… intron…     5 chr5_9690… 0.0902       27.7          1
 6 Cells_EBV-transformed_… intron…     7 chr5_9690… 0.0426       27.7          1
 7 Cells_EBV-transformed_… intron…     6 chr5_9690… 0.0426       27.7          1
 8 Cells_EBV-transformed_… intron…     8 chr5_9690… 0.0426       27.7          1
 9 Cells_EBV-transformed_… intron…     9 chr5_9689… 0.0380       25.8          2
10 Cells_EBV-transformed_… intron…    10 chr5_9690… 0.0371       25.8          2
# ℹ 112 more rows
Code
## 

## erap2 %>% filter(pip>0.1) %>% group_by(variant_id) %>% summarise(sumpip=sum(pip),ntissues=n()) %>% ggplot(aes(variant_id,sumpip)) + geom_bar(stat = "identity") + geom_point() + ggtitle("ERAP2 expr: most tissues assign pip to 16728 & 16885")

erap2 %>% filter(pip>0.1) %>% ggplot(aes(variant_id,pip)) + geom_violin() + geom_boxplot(width=0.05,alpha=0.5,outlier.shape = NA) + geom_point() + ggtitle("ERAP2 expr: most tissues assign pip to 16728 & 16885") + ylim(0,NA)
Warning: Groups with fewer than two data points have been dropped.
Groups with fewer than two data points have been dropped.
Groups with fewer than two data points have been dropped.

Code
print("intron intron_5_96900189_96901506 ")
[1] "intron intron_5_96900189_96901506 "
Code
intron %>% filter(pip>0.1) %>% ggplot(aes(variant_id,pip)) + geom_violin() + geom_boxplot(width=0.05,alpha=0.5,outlier.shape = NA) + geom_point() + ggtitle("ERAP2 intron_5_96900189_96901506:") + ylim(0,NA) + coord_flip()
Warning: Groups with fewer than two data points have been dropped.
Groups with fewer than two data points have been dropped.

Code
#intron %>% filter(pip>0.1) %>% group_by(variant_id) %>% summarise(sumpip=sum(pip),ntissues=n()) %>% ggplot(aes(variant_id,sumpip)) + geom_bar(stat = "identity") + ggtitle("ERAP2 intron_5_96900189_96901506: ") + coord_flip()

#ggplot(aes(variant_id,sumpip)) + geom_bar() 

Causal SNP according to the black death paper and others is rs2248374 chr5_96900192

Reuse

© HakyImLab and Listed Authors - CC BY 4.0 for Text and figures - MIT for code